Sunday, August 7, 2011

Nanotechnology For Data Storage

High-density digital recording requires an extremely thin recording layer. As opposed to ATOMM (Advanced Super Thin Layer & High Output Metal Media Technology) technology, which was the first technology to allow the production of submicron-scale thin metal coatings, Nanocubic technology allows the production of nanometer-scale ultra-thin coatings (one nanometer = one-billionth of a meter). In addition, nano-particle technology is employed to create magnetic needle-shaped metal particles and plate-shaped barium-ferrite particles that are only a few tens of namometers in size, and a new high-molecular binder material and nano-dispersion technology are used to ensure uniform dispersion of the particles. Using Nanocubic technology, it is now possible to create data cartridges that offer low noise, excellent storage characteristics, and capacities in excess of one terabyte.

Fujifilm nanocubic is a combination of 3 unique nano technologies.

1. Coating Technology
An advanced precision coating process creates layers 5 times thinner than exsiting technologies.



 2. Particle Technology

Creates two unique new ferromagnetic particles that are both just tens of nanometers in size:acicular ferromagnetic alloy and tabular ferromagnetic hexagonal barium ferrite.

3. Dispersion Technology

Employing a specially formulated polymer binder creates even dispersion and uniform packed structure.

Self-Powered Nanosystem With Wireless Data Transmission






Fabrication of a single nanodevice is no longer the state of the art in nanotechnology. The leading edge – and also currently the most challenging area in nanotechnology – is research that leads to a self-powered nanoscale system that is driven by the energy harvested from its environment and that can perform its work independently and sustainable. This is a key step toward self-powered nanotechnology, which is vitally important for medical science, environmental monitoring, defence technology and even personal electronics. Not to mention that it will lead to practically usable nanotechnology devices.

Each sensor is not required to work continuously and simultaneously, instead, it will have a 'blinking' working mode with a standby status and active status" says Wang. "The standby mode is normally longer, while the active mode is shorter. The energy scavenged and stored during the standby status can be used to drive it in the active mode. This means that these sensors periodically sample from their working environment and transmit data within a fraction of second. We can use the nanogenerator to harvest energy from the environment and store most of the energy when the sensor is in the standby mode. Then the collected energy will be used to trigger the sensor and then process and transmit the data in the active mode."
 The nanogenerator fabricated by Wang's team is a free-standing cantilever beam that consists of a five-layer structure: a flexible polymer substrate; densely packed zinc oxide nanowire textured films on its top and bottom surfaces; and electrodes on the surfaces.
 When it was strained to 0.12% at a strain rate of 3.56 % S-1, the measured output voltage reached 10 V, and the output current exceeded 0.6 µA (corresponding power density 10 mW/cm3).

Friday, August 5, 2011

Key Properties of Polymer Thin Films and Membranes






Researchers at the National Institute of Standards and Technology (NIST) have demonstrated* a measurement technique that reliably determines three fundamental mechanical properties of near-nanoscale films. The technique, which highlights the challenge of making mechanical measurements on an object with at least one dimension comparable to the size of a virus, should enable better design and engineering for a variety of thin-film technologies, particularly reverse-osmosis membranes for water purification.

5 Surprising Uses For Carbon Nanotubes

First discovered under an electron microscope over a half a century ago, carbon nanotubes have become one of the most sought after materials today. The tiny structures are used in dozens of applications that touch nearly every industry, including aerospace, electronics, medicine, defense, automotive, energy, construction, and even fashion.

Carbon nanotubes (aka CNTs) are made from graphene sheets consisting of a single atomic layer of carbon atoms in a honeycomb framework that can be rolled into a tube measuring about a nanometer or, one billionth of a meter, in diameter.

At this scale, these cylindrical molecules defy the classic laws of physics with exceptional properties. Carbon nanotubes have excellent electrical conductivity, the ability to withstand high working temperatures, and the highest strength to weight ratio of any known material.

Saturday, July 30, 2011

Nanogenerators Grow Strong Enough To Power Small Conventional Electronics




Blinking numbers on a liquid-crystal display (LCD) often indicate that a device's clock needs resetting. But in the laboratory of Zhong Lin Wang at Georgia Tech, the blinking number on a small LCD signals the success of a five-year effort to power conventional electronic devices with nanoscale generators that harvest mechanical energy from the environment using an array of tiny nanowires.


In this case, the mechanical energy comes from compressing a nanogenerator between two fingers, but it could also come from a heartbeat, the pounding of a hiker's shoe on a trail, the rustling of a shirt, or the vibration of a heavy machine. While these nanogenerators will never produce large amounts of electricity for conventional purposes, they could be used to power nanoscale and microscale devices - and even to recharge pacemakers or iPods.


Wang's nanogenerators rely on the piezoelectric effect seen in crystalline materials such as zinc oxide, in which an electric charge potential is created when structures made from the material are flexed or compressed. By capturing and combining the charges from millions of these nanoscale zinc oxide wires, Wang and his research team can produce as much as three volts - and up to 300 nanoamps.

Nanopillar Light Collectors Solar Cells




Sunlight represents the cleanest, greenest and far and away most abundant of all energy sources, and yet its potential remains woefully under-utilized. High costs have been a major deterrant to the large-scale applications of silicon-based solar cells. Nanopillars - densely packed nanoscale arrays of optically active semiconductors - have shown potential for providing a next generation of relatively cheap and scalable solar cells, but have been hampered by efficiency issues. The nanopillar story, however, has taken a new twist and the future for these materials now looks brighter than ever.

"By tuning the shape and geometry of highly ordered nanopillar arrays of germanium or cadmium sulfide, we have been able to drastically enhance the optical absorption properties of our nanopillars," says Ali Javey, a chemist who holds joint appointments with the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) at Berkeley.

Energy Efficient And Ultra-Small Displays



University of Michigan scientists using AFOSR-funding have created the smallest pixels available that will enable LED, projected and wearable displays to be more energy efficient with more light manipulation possible and all on a display that may eventually be as small as a postage stamp.

This latest nanostructuring technology for the Air Force developed by Dr. Jay Guo, associate professor in the Department of Electrical Engineering and Computer Science at the University of Michigan and his graduate student researchers, Ting Xu, Yi-Kuei Wu and collaborator Dr. Xiangang Luo includes a new color filter made of nano-thin sheets of metal-dielectric-metal stack, which have perfectly-shaped slits that act as resonators. They trap and transmit light and transform the pixels into effective color filtering elements.

The pixels created from this technology are ten times smaller than what are now on a computer monitor and eight times smaller than ones on a smart phone. They use existing light more effectively and make it unnecessary to use polarizing layers for liquid crystal displays (LCDs). They enable the backlighting on the LED to be used more efficiently. Prior to this technology, LCDs had two polarizing layers, a color filter sheet, two layers of electrode-laced glass and a liquid crystal layer, but only about five percent of the backlighting reached the viewer.

Nanosprings Offer Improved Performance In Biomedicine



Researchers at Oregon State University have reported the successful loading of biological molecules onto "nanosprings" - a type of nanostructure that has gained significant interest in recent years for its ability to maximize surface area in microreactors.

The findings, announced in the journal Biotechnology Progress, may open the door to important new nanotech applications in production of pharmaceuticals, biological sensors, biomedicine or other areas.

"Nanosprings are a fairly new concept in nanotechnology because they create a lot of surface area at the same time they allow easy movement of fluids," said Christine Kelly, an associate professor in the School of Chemical, Biological and Environmental Engineering at OSU.

"They're a little like a miniature version of an old-fashioned, curled-up phone cord," Kelly said. "They make a great support on which to place reactive catalysts, and there are a variety of potential applications."

Artificial Skin Out of Nanowires


Engineers at the University of California, Berkeley, have developed a pressure-sensitive electronic material from semiconductor nanowires that could one day give new meaning to the term "thin-skinned."

The artificial skin, dubbed "e-skin" by the UC Berkeley researchers, is described in a Sept. 12 paper in the advanced online publication of the journal Nature Materials. It is the first such material made out of inorganic single crystalline semiconductors.
A touch-sensitive artificial skin would help overcome a key challenge in robotics: adapting the amount of force needed to hold and manipulate a wide range of objects.



For the e-skin, the engineers printed the nanowires onto an 18-by-19 pixel square matrix measuring 7 centimeters on each side. Each pixel contained a transistor made up of hundreds of semiconductor nanowires. Nanowire transistors were then integrated with a pressure sensitive rubber on top to provide the sensing functionality. The matrix required less than 5 volts of power to operate and maintained its robustness after being subjected to more than 2,000 bending cycles.

The researchers demonstrated the ability of the e-skin to detect pressure from 0 to 15 kilopascals, a range comparable to the force used for such daily activities as typing on a keyboard or holding an object. In a nod to their home institution, the researchers successfully mapped out the letter C in Cal.

Nanoribbons for Graphene Transistors


In the recent issue of Nature, scientists from Empa and the Max Planck Institute for Polymer Research report how they have managed for the first time to grow graphene ribbons that are just a few nanometers wide using a simple surface-based chemical method. Graphene ribbons are considered to be «hot candidates» for future electronics applications as their properties can be adjusted through width and edge shape.

Transistors on the basis of graphene are considered to be potential successors for the silicon components currently in use. Graphene consists of two-dimensional carbon layers and possesses a number of outstanding properties: it is not only harder than diamond, extremely tear-resistant and impermeable to gases, but it is also an excellent electrical and thermal conductor. However, as graphene is a semi-metal it lacks, in contrast to silicon, an electronic band gap and therefore has no switching capability which is essential for electronics applications. Scientists from Empa, the Max Planck Institute for Polymer Research in Mainz (Germany), ETH Zürich and the Universities of Zürich und Bern have now developed a new method for creating graphene ribbons with band gaps.